Fogging and Misting Shower Performance for Reduction of Exposure During Protective Clothing Removal

Martin Axon

Principal Occupational Hygienist

SafeBridge Europe, Limited

Mountain View, CA • New York, NY • Europe (UK)

www.safebridge.com

In collaboration with PBSC Ltd and Eisai Inc.

Background to Project

- Pharmaceutical industry handles active pharmaceutical ingredients (APIs) designed to cause a physiological effect if absorbed by the body.
 - APIs that cause effects at low doses may be considered "occupationally potent"
- A range of exposure controls can be applied

Layers of Control

- Layers of control can include:
 - Primary control at source
 - Secondary control a contained facility
 - Tertiary controls personal protective equipment (PPE)
 - This PPE will often include a disposable coverall
 - Administrative controls e.g. procedures and techniques – applies to all controls

Primary Control

- Example 1 materials with OELs ranging from 5,000 100 µg/m³ can potentially be controlled by local exhaust ventilation.
- Example 2 materials with OELs below 10 μg/m³ usually require contained operations (isolators, contained transfer systems etc. are recommended).

Secondary Control

- Secondary control can be provided by the facility and may include:
 - Processing room under negative pressure
 - Dilution ventilation and directional airflow
 - HEPA filtration of process room air, no recirculation
 - Airlock and changing room
 - Decontamination shower
 - Moved away from air shower installations beginning in 1990s

Combination Shower

Tertiary Control

- Personal protective equipment (PPE)
- Disposable coverall and maybe other PPE
- As the operator/s leave the process suite the PPE will be removed
- If contaminated with API, removal of the PPE will result in the generation of airborne API

Disposable Coverall

Tyvek 'Classic'

Washable Coverall Combination

Washable polyester suit and PAPR

Evaluation of Shower Effectiveness

- Concept for fogging and misting showers presented at a Pharmaceutical Safety Group meeting in the early 1990's.
- Opportunity arose to generate new data working in collaboration with a vendor (PBSC Ltd.) and their client Eisai Inc.

Operation of Fogging and Misting Showers

- Fogging shower water droplets 5 10 μm diameter.
- Misting shower water droplets 20 50 µm diameter.
- How effective are fogging/misting showers?

Objectives

- Provide data on the decontamination effectiveness of a fogging and/or misting shower
- Evaluate the extent of decontamination of two types of suit
- Evaluate the suppression of airborne API powder during suit removal
- Overall evaluate if effective to keep degowning area clean.

Develop Method

- How do you evaluate decontamination and airborne suppression?
 - Surrogate API used for safety
 - Before and after comparison
 - Artificially contaminate the suit
 - Measure surrogate on the suit before and after shower use
 - Measure airborne concentrations with and without decontamination

Approach Used

- Patches at defined locations
- Suits are artificially contaminated with a surrogate API
- Surrogate is applied to the patches while the suit is worn by an operator

Challenges

- Amount applied to patch unknown
- Amount applied to patch variable
- Can't measure the actual amount applied before showering
- Recovery efficiency?

Solutions

- Validate surface recovery efficiency
- Apply surrogate to two sets of suits.
- Measure first set before
- Measure the second set after
- Assume (and hope) that the decontamination factor greatly exceeds the application variation

Results of Validation

- Method validation (air and surface) and analysis by SafeBridge AIHA accredited industrial hygiene analytical laboratory in California.
 - Dry and wet recoveries validated
 - Dry application: 11 84 mg, 67 109 % recovery
 - Wet application: 0.2 10 mg, 91 104 % recovery
- Method acceptable

Surrogate Application

- Same person throughout (except first evaluation demonstration by SafeBridge occupational hygienist)
- Chest, knee, armpit, head, shoulder
- PAPR side of head, bib

Patch Locations

Surrogate Application

VIDEO HERE

Removal of Patches

Results for Patch Application Recoveries

- Surrogate applied to patches while the suits worn by the "operators".
- The amount recovered from the patches ranged from 1,100 μg and 6,150 μg.
- Mean result of 3,400 μg used

Study Design - Variables Evaluated

- Two types of disposable suit material, plus PAPR
 - Tyvek or polyester
- Fogging/misting or fogging only
- Effect of operator position when showering
 - Direct or indirect
- Variables selected to meet clients objectives

Study Design – Fixed Parameters

- Water shower
- Fogging 30 seconds, 23 litres/hr
- Misting 60 seconds, 228 litres/hr
- Operator movements in shower
- Patch locations, defined body locations

Showering Technique

VIDEO TO GO HERE

Suppression of Airborne API VIDEO

Results – Air Monitoring

- Without Showering Tyvek Ensemble
 - Overall, area and personal samples in change cubicle (n=14), mean = 88.6 μg/m³, range = 19 – 349 μg/m³.
- Without Showering Washable Suit Ensemble
 - Overall, area and personal samples in change cubicle (n=14), mean = 54.4 μg/m³, range = 21.4 249 μg/m³.
- No difference statistically, mean = 72 µg/m³

Test Modes for Airborne Suppression

- 1. Direct Fogging/Misting Wearing Tyvek
 - Selected by vendor most likely mode of operation for potential customers.
- 2. Direct Fogging/Misting Wearing Washable Suit
 - Anticipated mode of shower use by Eisai
- 3. Indirect Fogging Wearing Tyvek
 - Selected by vendor worst case conditions for most popular suit.
- 4. Direct Fogging Wearing Washable Suit
 - Possible mode of shower use by Eisai

Airborne Results After Showering

- Mean result without showering 72 μg/m^{3.}
- 1. Direct fogging/misting wearing Tyvek
 - Mean result < 0.09 μg/m³.
- 2. Direct fogging/misting wearing washable suit
 - Mean result < 0.1 μg/m³.
- 3. Direct fogging wearing washable suit
 - Mean result < 0.16 μg/m³
- 4. Indirect fogging wearing Tyvek
 - Mean result < 0.11 μg/m^{3.}

Summary of Suppression Results

- Direct fogging/misting wearing Tyvek
 - Suppression > 800 times reduction
- 2. Direct fogging/misting wearing washable suit
 - Suppression > 730 times reduction
- 3. Direct fogging wearing washable suit
 - Suppression > 440 times reduction
- 4. Indirect fogging wearing Tyvek
 - Suppression > 640 times reduction

Conclusions for Suppression

- The shower appears to be very effective at suppressing airborne releases during removal of coveralls.
- Shower mode doesn't appear to affect outcome
- The type of suit worn doesn't appear to affect outcome
- Suggested mechanism

Test Modes for Decontamination

- 1. Direct fogging/misting wearing Tyvek
- 2. Direct fogging/misting wearing washable suit
- 3. Indirect fogging/misting wearing Tyvek
- 4. Indirect fogging/misting wearing washable suit

Decontamination Results After Showering

- Mean patch contamination before: 3,400 μg
- 1. Direct fogging/misting wearing Tyvek
 - Mean patch loading 33 μg
- 2. Direct fogging/misting wearing washable suit
 - Mean patch loading 11 μg
- 3. Indirect fogging/misting wearing Tyvek
 - Mean patch loading 2,730 μg
- 4. Indirect fogging/misting wearing washable suit
 - Mean patch loading 442 μg

Summary of Decontamination Results

- 1. Direct fogging/misting wearing Tyvek
 - Decontamination: 104 times reduction
- 2. Direct fogging/misting wearing washable suit
 - Decontamination: 309 times reduction
- 3. Indirect fogging/misting wearing Tyvek
 - Decontamination: 1.3 times reduction
- 4. Indirect fogging/misting wearing washable suit
 - Decontamination: 8 times reduction

Conclusions for Decontamination

- The effectiveness of suit decontamination <u>highly</u> dependent on the shower mode (direct or indirect).
- Unlike airborne suppression, for decontamination the operator needs to be in the direct path of the shower.
- No statistically significant difference due to the type of suit used (Wilcoxon signed rank test).

Other Findings

- Decontamination of PAPR
 - After direct f/m shower, mean = 380, range 0.5 − 2,240 µg (n = 6)
 - After indirect f/m shower, mean = 3,150, range 0.8 7460 μg (n = 6)
 - 8 times lower than the notional application when using direct f/m shower and 1.1 time lower than the notional application using indirect f/m shower
 - Fewer samples and highly variable results
- Water penetration of suits
 - Tyvek suit some penetration in all shower modes except indirect fogging
 - Washable suit no penetration observed in any mode

Summary of Findings

- The findings apply to the design of shower tested. They
 may not apply to other APIs, types of shower or suit
 material.
- Suppression of airborne API no difference between shower type, mode of operation or type of suit worn.
- Decontamination the use of misting/fogging shower in the direct mode appears to provide significant decontamination.
- PAPR decontamination was highly variable.
- Tyvek suits leaked in all modes except indirect fogging.
 Protected seam Tyvek suits are available.

Recommendations

- Based on this work, where there is the potential for a PPE ensemble to become contaminated during production operations the use of a fogging shower is recommended prior to removal to reduce the potential for airborne exposure to the API.
- Where decontamination of a PPE ensemble is required the use of a fogging/misting shower, in direct mode, prior to removal is recommended.

Limitations

- Shower is not a substitute for other controls
- Please refer to full report
 - Available from peterbloomer@pbsc.co.uk
- Seek advice prior to selecting shower